
KRASH: Reproducible CPU Load
Generation on Many Cores Machines

Swann Perarnau and Guillaume Huard
INRIA Moais research team, CNRS LIG laboratory, Grenoble Universities, France

�rstname.lastname@imag.fr

Abstract
In this article we present KRASH, a tool for reproducible gener-
ation of system-level CPU load. This tool is intended for use in
shared memory machines equipped with multiple CPU cores which
are usually exploited concurrently by several users. The objective
of KRASH is to enable parallel application developers to validate
their resources use strategies on a partially loaded machine by re-
playing an observed load in concurrence with their application. To
reach this objective, we present a method for CPU load genera-
tion which behaves as realistically as possible: the resulting load
is similar to the load that would be produced by concurrent pro-
cesses run by other users. Nevertheless, contrary to a simple run
of a CPU-intensive application, KRASH is not sensitive to system
scheduling decisions. The main benefit brought by KRASH is this
reproducibility: no matter how many processes are present in the
system the load generated by our tool strictly respects a given load
profile. To our knowledge, KRASH is the only tool that implements
the generation of a dynamic load profile (a load varying with time).
When used to generate a constant load, KRASH result is among the
most realistic ones. Furthermore, KRASH provides more flexibility
than other tools.

Categories and Subject Descriptors D.4.9 [Operating Systems]:
Systems Programs and Utilities

General Terms Experimentation, Performance

Keywords CPU load generation, many cores, experimentation
testbed

1. Introduction
New hardware architectures, composed of multiple cores and a
shared memory, spread in the domain of High Performance Com-
puting. These many-cores machines are generally used as comput-
ing servers and shared among several users. In this context, avail-
able resources to a given user are only a part of the shared machine:
other processes constantly start and terminate and the operating
system tries to fairly dispatch resources among them. At the end of
the day, programs are faced with heterogeneous resource availabil-
ity. To cope with this dynamic heterogeneity, new parallel program-
ming paradigms have been put forward (work-stealing and adaptive

Copyright is held by the author/owner(s).
PPoPP’10, January 9–14, Bangalore, India.
ACM 978-1-60558-708-0/10/01.

parallel algorithms for instance). When comparing these different
approaches, one might consider various evaluation criteria such as
how they compete in the system to get resources control or how
efficiently they use the resources they are given. In this article we
do not address the evaluation of a parallel application capabilities
to compete for resources access. The work we present is an exper-
imental testbed able to control resources unavailability (what we
name load) according to a determined pattern. Consequently, this
work makes possible to compare the way distinct parallel program-
ming paradigms use a fixed set of heterogeneous resources. This
efficiency comparison is usually difficult as most system schedulers
try to fairly balance resources access among running processes. In
this context, a fine grained parallel application that spawns more
processes than actual computing resources will get more access
opportunities than other parallelization schemes, making the effi-
ciency comparison impossible.

Thus, we propose a method to precisely produce and reproduce
a controlled dynamic environment on a real dedicated machine.
Our tool, named KRASH1, is able to generate the same desired
concurrent load, whatever the parallel program under evaluation,
no matter how many processes it creates or the system resources it
requires. In this article we focus on CPU load only, which is usually
the most important factor in high performance computing.

2. Reproducible generation of CPU load
The principle is quite simple: place on each CPU core a CPU in-
tensive process that will act as load generator. Then directly ask
the scheduler to assign to our load generator the desired proportion
of available timeslices. With our method, the generation is precise,
because it is performed at the same frequency as scheduling deci-
sions or, stated differently, at the same resolution. Moreover, it is
unintrusive (generate as few extra system load as possible) because
the generator is considered by the scheduler itself, at the same time
as other processes.

This generation method has been made possible by two new fea-
tures added in recent Linux kernel releases (≥ 2.6.23): the cpuset
and the group scheduling mechanisms. The cpuset feature en-
ables programmers to attach to processes a set of CPU cores on
which they can be executed. This restriction to a set of resources is
enforced by the kernel itself. The group scheduling feature en-
ables programmers to control resources sharing performed by the
scheduler. When this feature is in effect, all processes necessarily
belong to one control group. The scheduler distributes timeslices
between groups in proportion to their priority. Within each group,
classical priority scheduling is applied between processes to share
assigned timeslices.

1 KRASH is available at http://krash.ligforge.imag.fr and pro-
vided free of charge under the terms of the GNU GPL license.

General dynamic Side effects Arbitrary number Intrusiveness Resolution
load profile on scheduler of processes

KRASH Yes Negligible Yes Negligible Same as scheduler
Wrekavoc [Olivier Dubuisson and Jeannot 2009] Not implemented Low No Active poll Higher than scheduler
Real time priority [Canon and Jeannot 2006] Not implemented High Yes Periodic wakeup Poor
Frequency scaling [Srihari Makineni 2003] No Medium Yes Negligible Higher than scheduler

Table 1: Features comparison table for several load generation solutions.

Figure 1: Diagram of our solution, based on boulder and supervisor pro-
cesses

Taking into account theses features our generator is set in place
by performing the following steps:

• create a new control group that we name the "base" group and
move all processes into this group.

• for each CPU core, create a load generation process with mini-
mal memory footprint (we name it the "boulder"), a new control
group, attach the load generation process to this control group
and restrict the control group to the concerned CPU core.

• choose a CPU core to run a supervisor process. This supervisor
is given an input load profile and monitor load on all the load
generation processes. Whenever required, it adjusts the priority
of the groups that contain load generation processes.

Figure 1 gives a simple diagram of this method.

3. Evaluation
For our experiments we used a SMP system made of 8 Dual Core
AMD Opteron 875 (2.2 GHz), 32 GB of RAM and a RAID 1
250 Go storage subsystem. This machine runs a Linux Debian Sid
(unstable) Operating system with the latest kernel (version 2.6.30).

Figure 2 reports the load we measured when using KRASH
(plain lines) to reproduce a custom reference profile (dashed lines)
while a concurrent Linpack is running. This is only a part of the
KRASH validation campaign we have conducted. It shows that our
tool generates load with an average error of 2% and a standard
deviation around 1%.

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200

C
P

U
 L

oa
d

(%
)

Time (s)

CPU Load Generated
Reference Profile

Figure 2: Load generated by KRASH in concurrence with Linpack

Regarding features, we summarize main characteristics of
KRASH and other existing load generation method in table 1.

As none of the other solutions we know about is able to generate
an arbitrary dynamic load profile we have compared KRASH with

them regarding constant load generation only. Our main concern in
this comparison is the obtrusiveness of each tool: a CPU-only load
generation method might induce undesirable side effects on other
resources in the system. System tasks that are the most affected by
the generated CPU load are the ones that can usually be overlapped
with computation tasks: networking operations and I/Os transac-
tions. When hindering the scheduler efforts to nicely order running
processes, a load generation method might prevent overlapping and
induce worse than expected network or I/Os performance degrada-
tion. Conversely, methods that physically degrade target machine
characteristics (the frequency scaling method for instance) might
induce a better use of networking and computation overlapping op-
portunities. Both issues are outlined by the following experiment.

The benchmark we use in this evaluation is NAS NBP DT,
which performs intensive point-to-point blocking MPI communica-
tions between all the involved processes. We have run this bench-
mark with 80 processes and a random communication topology.
The slowdowns we have obtained on this benchmark when load-
ing the machine at 50% with our different methods are reported in
table 2. This experiment clearly indicates that previous suggested
methods for CPU load generation can induce undesired side effects
on other system resources such as communications. While not pre-
sented here, we have made several other experiments that validate
this conclusion regarding I/O operations.

Execution time
average std dev. Slowdown

None 2.9 0.5 1
KRASH 6.2 0.8 2.1
Wrekavoc NA NA > 100
Real time priority 11.3 3.2 3.9
Frequency scaling 4.4 0.6 1.5

Table 2: Effects of load generation solutions on NAS NBP DT.

4. Conclusion
KRASH is able to generate in a reproducible way dynamic CPU
loads and performs better than previously proposed solutions. It
enables developers to validate the efficiency of their parallel ap-
plications in heterogeneous environments by generating an unin-
trusive and unobtrusive CPU load. While the CPU is usually the
most important resource in high performance computing, some ap-
plications also heavily depend on other parts of the system such as
caches, memory, I/O subsystem or network. Our future works will
focus on extending KRASH to make it able to generate load on
these other parts.

References
J.C. Canon and E. Jeannot. Wrekavoc: a tool for emulating heterogeneity.

In 15th IEEE Heterogeneous Computing Workshop (HCW 06), 2006.
Jens Gustedt Olivier Dubuisson and Emmanuel Jeannot. Validating

Wrekavoc: a tool for heterogeneity emulation. In 18th IEEE Hetero-
geneous Computing Workshop (HCW 09), 2009.

Ravi Iyer Srihari Makineni. Measurement-based analysis of tcp/ip process-
ing requirements. In In 10th International Conference on High Perfor-
mance Computing (HiPC 2003), 2003.

